Comparative Studies: *Grit Blasting* and *Bristle Blasting* Processes for Field Pipeline Surface Preparation

Robert J. Stango, Ph.D.

Professor of Mechanical Engineering 1515 West Wisconsin Avenue **Marquette University** Milwaukee, WI 53233 USA

FIELD JOINT COATING CONFERENCE

LONDON, 22-24 SEPTEMBER 2015.

Presentation Summary

Surface Preparation Tools/Processes: FJC and CFR

II Functional Aspects of Grit Blast and Bristle Blast Processes Grit Blast Bristle Blast

III Comparative Studies: Bristle Blast and Grit Blast Processes

- Surface cleanliness Weld cleaning Texture/anchor profile Residual stress state
- **IV** Summary/Conclusion

I

Acknowledgment/Questions/Discussion

- Key Issues: ► Texture/anchor profile
 - compressive residual stress (enhanced life, SCC resistance) ?

clean and profile in one step ?

- Key Issues: ► negligible thermal loading ?
 - compressive residual stress (enhanced life, SCC resistance) ?

II. Functional Aspects of Grit Blast and Bristle Blast Processes

apparatus

II. Functional Aspects of Grit Blast and Bristle Blast Processes

Grit Blast Process

mechanics/morphology

II. Functional Aspects of Grit Blast and Bristle Blast Processes **Grit Blast Process** 2α Target Surface substrate morphology

Bristle Blast Process

II. Functional Aspects of Grit Blast and Bristle Blast Processes

apparatus

mechanics

mechanics/morphology

morphology

[left top] As-received corroded pipe section having severe corrosion [right] **bristle blast** treated surface (top).

SSPC-SP 10 (near-white blast cleaning) SSPC-SP 5 (white metal blast cleaning)

III. Comparative Studies: Bristle Blast and Grit Blast Processes Residual stress state

Bristle Blast

Surface/subsurface deformation

III. Comparative Studies: **Residual stress state Bristle Blast and Grit Blast Processes** Corrected Stress vs. Depth 20 σz 10 0 (≡**σ**_x 0 Corrected Stress (ksi) -10 -20 **Bristle Blast** -30 -40 $σ_y$ (= $σ_T$) -50

Residual stresses measured using x-ray diffraction [ABS-A bristle blast surface]

III. Comparative Studies: **Residual stress state Bristle Blast and Grit Blast Processes Bristle Blast** Corrected Stress vs. Depth 20 10 0.10 mm 0 Ö Stress (ksi) -10 100 Corrected -20 MPa 200 -30 0.10 mm -40 - ABS-A Transverse 300 ABS-A Longitudinal -50 600 200 100 300 400 500 600

Depth (microns)

IV. Summary and Conclusion

Grit blast and Bristle blast processes

... Relevance for Field Joint Coating (FJC) and Coating Field Repair (CFR) operations

- Process Mechanics/Surface Morphology
- Cleanliness
- Texture/Anchor Profile
- Residual Stress State

Discussion

ACKNOWLEDGEMENT

SUPPORT PROVIDED BY THE PROJECT SPONSOR

MONTI WERKZEUGE, GMBH HENNEF, GERMANY

IS DEEPLY APPRECIATED

... ALONG WITH DEDICATED FACULTY AND EFFORTS OF FORMER MARQUETTE UNIVERSITY GRADUATE STUDENTS PIYUSH KHULLAR (MS 2009) AND JORGE MARTINEZ (MS 2011).